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Abstract

The steady-state simplified PN approximation to the radiative transport equation has been successfully applied to many
problems involving radiation. This paper presents the derivation of time-dependent simplified PN (SPN) equations (up to
N = 3) via two different approaches. First, we use an asymptotic analysis, similar to the asymptotic derivation of the
steady-state SPN equations. Second, we use an approach similar to the original derivation of the steady-state SPN equa-
tions and we show that both approaches lead to similar results. Special focus is put on the well-posedness of the equations
and the question whether it can be guaranteed that the solution satisfies the correct physical bounds. Several numerical test
cases are shown, including an analytical benchmark due to Su and Olson [B. Su, G.L. Olson, An analytical benchmark for
non-equilibrium radiative transfer in an isotropically scattering medium, Ann. Nucl. Energy 24 (1997) 1035–1055.].
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The transport of charged and uncharged particles in scattering and absorbing media is challenging from
both a theoretical and a computational point of view. The up-to seven-dimensional phase space (space, time,
velocity) of the Boltzmann transport equation combined with the necessity of a fine resolution still poses major
problems. Time-dependent radiative transfer plays a role in astrophysics (supernova explosions), in the inter-
action of short-pulsed lasers with plasmas, or in LIDAR (light detection and ranging) technology, to name a
few. In the past, many sophisticated discretization schemes and approximate models have been developed. But
still in many fields, deterministic particle transport calculations are hardly used.
0021-9991/$ - see front matter � 2007 Elsevier Inc. All rights reserved.
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In this paper, we consider a new approximation to the time-dependent Boltzmann transport equation. The
simplified PN (SPN) equations were originally developed for steady-state problems in nuclear engineering [4–6]
and have subsequently been generalized and successfully applied in several other fields, including radiative
transfer [9,8]. The first formal derivation by Gelbard [4–6] started with the one-dimensional PN equations,
which contain only first-order space derivatives, and used substitutions to obtain a system of elliptic partial
differential equations. To obtain equations in three space dimensions, even-order moments are interpreted
as scalars, odd-order moments are interpreted as vectors, and one-dimensional derivatives @x are replaced
by divergence operators and gradients, respectively. In three space dimensions, compared to the ðN þ 1Þ2 inde-
pendent unknowns in the spherical harmonics PN equations, the number of unknowns in the SPN equations
increases only linearly as N. Because of the derivation via the one-dimensional PN equations, the SPN method
was at first not widely accepted. But alternative derivations via asymptotic expansion [7] and via a variational
approach [2,14] have substantiated the validity of the SPN hierarchy.

The SPN equations are accurate if the medium is optically thick, the scattering rate is comparable to the
collision rate, and scattering is not highly forward-peaked [7]. In addition, numerical experiments (cf. [9]
and references therein) have shown that the SPN equations give good results even when the regime is not
so diffusive, and even in the presence of a discontinuity in the opacities. This means that in the diffusive regime
a higher accuracy is obtained and at the same time the range of applicability is increased.

Until now, the SPN method was almost exclusively applied to steady-state transport equations, i.e. no time-
dependence was assumed. Only then can the PN equations be substituted into each other to give a second-
order system. To our knowledge, there is only one attempt in the literature [12] to apply the SPN method
to a time-dependent problem. Here, the authors use a semi-discretization in time (i.e. the time variable is dis-
cretized whereas the other variables are treated as being continuous) and apply the SPN approximation to the
then steady system.

In this paper, we systematically derive a SPN hierarchy for time-dependent problems on the continuous
level via a formal asymptotic analysis of the Boltzmann transport equation. We explicitly derive time-
dependent SPN equations up to N = 3 (Section 2). We put special focus on the question whether the
approximation preserves the positivity of the radiative energy. Many approximations lack this property.
For instance, the time-dependent PN equations are not positivity-preserving and have unphysical oscillatory
behavior [3]. We demonstrate that the time-dependent SPN equations, which are simpler than the time-
dependent PN equations, also lose positivity and monotonicity. An analysis of the diffusion matrix of
the time-dependent SPN equations shows that a necessary criterion for positivity is violated. A simplified
system of equations is derived which satisfies this criterion. In Section 3, we try to obtain the SP3 equations
by algebraic manipulations of the P3 equations. In the steady-state case, this leads to the same result as the
asymptotic analysis, but in the time-dependent case, the results are different. Boundary and initial condi-
tions are derived in Section 4. The numerical results in Section 5 demonstrate the validity of the SPN

approach for time-dependent problems. Furthermore, the positivity of the energy in the different models
is investigated numerically. Finally, the SP3 equations are tested in an analytical benchmark for non-equi-
librium radiative transfer [13].

1.1. The transport equation

We consider a convex, open, bounded domain Z in R3, and we assume that Z has a smooth boundary with
outward normal vector n. The direction of particle motion is given by X 2 S2, where S2 is the unit sphere in
three dimensions. Moreover, we let
C ¼ @Z � S2 and C� ¼ fðx;XÞ 2 C : nðxÞ � X < 0g:

The transport of mono-energetic particles that undergo isotropic scattering in a medium is modeled by the
linear Boltzmann equation
1

v
@twðt; x;XÞ þ X � rxwðt; x;XÞ þ rtðxÞwðt; x;XÞ ¼

rsðxÞ
4p

Z
S2

wðt; x;X0ÞdX0 þ qðt; xÞ
4p

; ð1:1Þ
where q is an isotropic source term. At the boundary, we prescribe the ingoing radiation
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wðt; x;XÞ ¼ wbðt; x;XÞ on C�; ð1:2Þ

and as the initial condition, we prescribe
wð0; x;XÞ ¼ w0ðx;XÞ: ð1:3Þ

Here, wðt; x;XÞ cos hdA dt dX is the number of particles at point x and time t that move with velocity v dur-
ing dt through an area dA into a solid angle dX around X, and h is the angle between X and dA. The total
cross section rtðxÞ is the sum of the absorption cross section raðxÞ and the total scattering cross section
rsðxÞ.

1.2. The steady-state SPN equations

In one-dimensional slab geometry, the steady-state transfer equation simplifies to
l@zwðz; lÞ þ rtðzÞwðz; lÞ �
rsðzÞ

2

Z 1

�1

wðz;l0Þdl0 ¼ qðzÞ
2
: ð1:4Þ
Here, w depends only on z, which is the spatial coordinate perpendicular to the surfaces of the slab, and on
l 2 ½�1; 1�, which is the cosine of the angle between direction and z-axis. Let Pl denote the lth Legendre poly-
nomial on ½�1; 1�. The PN approximation assumes a decomposition of the intensity w into a finite number of
Legendre moments wl; l ¼ 0; . . . ;N
wðz; lÞ ¼
XN

l¼0

wlðzÞ
2lþ 1

2
P lðlÞ: ð1:5Þ
Furthermore, we make the usual assumption that N is odd. If we apply the PN approximation (1.5) to (1.4) we
obtain for l ¼ 0; . . . ;N
@z
lþ 1

2lþ 1
wlþ1 þ

l
2lþ 1

wl�1

� �
þ rtwl ¼ rsd0;lwl þ d0;lq; ð1:6Þ
with w�1 ¼ wNþ1 ¼ 0.
The SPN equations can be formally obtained from any 1-D PN approximation by algebraically solving

every second equation for the odd-order moment and inserting the result into the equations above and below
to obtain a system of second-order partial differential equations. (These are the second-order form of the 1-D
PN equations.) Then, the one-dimensional diffusion operators are formally replaced by three-dimensional dif-
fusion operators. For example, the second-order form of the P1 equations reads
�@z
1

3rt
@zw0 ¼ q� raw0: ð1:7Þ
The three-dimensional version is
�divx
1

3rt
rxw0 ¼ q� raw0: ð1:8Þ
Eq. (1.8) is the familiar 3-D P1 approximation. If one follows this procedure starting with the 1-D PN

equations with N > 1, one does not obtain the 3-D PN equations; instead, one gets the 3-D SPN

equations.
On the other hand, the derivation of the steady-state SPN equations via asymptotic analysis starts from the

scaled equations [7]
X � rxwðx;XÞ þ
1

e
rtðxÞwðx;XÞ ¼

rt

e
� era

� � 1

e

Z
S2

wðx;X0ÞdX0 þ e
qðxÞ
4p

: ð1:9Þ
All quantities are now assumed to be Oð1Þ except for the scalar parameter e, which is assumed to be small. The
asymptotic analysis of this steady-state equation emerges as a special case of the time-dependent equations
considered below.
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2. Time-dependent SPN equations via asymptotic analysis

The steady-state diffusion equation is an elliptic PDE. Time-dependent diffusion theory is governed by a
parabolic PDE. To obtain higher-order corrections to diffusion theory, we write the transport equation in
a parabolic scaling. As before, space-derivatives are scaled by a small parameter e. The additional time-
derivative is scaled by e2. This is called a parabolic scaling, since a differential operator that is first-order
in time and second-order in space is invariant under this scaling. The transport equation is therefore writ-
ten as
e2 1

v
@twþ eX � rxwþ rtw ¼ rt � e2ra

� � 1

4p
/þ e2 q

4p
; ð2:1Þ
where w ¼ wðt; x;XÞ, /ðt; xÞ ¼
R

S2 wðt; x;XÞdX and q ¼ qðt; xÞ.
The asymptotic analysis in the following is guided by two main properties that we want the equations to

preserve.
Integrating (2.1) over X and dividing by e2, we obtain the ‘‘balance’’ equation
1

v
@t/þ

1

e
rx �

Z
S2

XwdXþ ra/ ¼ q; ð2:2Þ
which states a basic physical principle: changes in the scalar flux / are either due to leakage (the spatial deriv-
ative term), absorption, or sources. We require that this ‘‘balance’’ equation be contained in the final choice of
SPN equations.

Second, our aim is to obtain a well-posed system of parabolic PDEs that have a positive solution /. These
questions are related to the diffusion matrix of the system. The linear systems that we obtain can be written in
the general form
ut þ ADu ¼ Bðue � uÞ; ð2:3Þ

where the functions u and ue have values in Rn, and the matrices A and B have dimension n� n. The properties
(e.g. boundedness, positivity) of the solutions of the system depend on the eigenvalues of the diffusion matrix
A. Such properties are standard in the case n = 1. There exists no general result on conditions that ensure
boundedness, positivity or maximum principles for systems of parabolic (i.e. first-order time, second-order
space derivatives) equations [1]. However, we argue in the following that the non-negativity of all eigenvalues
of A is a necessary condition for that. It is well-known that if one eigenvalue of the diffusion matrix is negative,
then we have an ill-posed problem, similar to inverse heat conduction. If we have a pair of complex eigen-
values, then we do not have a maximum principle (cf. Appendix A for a counterexample). The solution might
have an oscillatory behavior, and we cannot expect the positivity of the solution. Thus we try to derive time-
dependent SPN equations with non-negative diffusion matrices.

We write (2.1) as
ð1þ eX � X þ e2T Þw ¼ S; ð2:4Þ

where
X ¼ 1

rt
rx; T ¼ 1

vrt
@t; and S ¼ 1� e2 ra

rt

� �
/
4p
þ e2 q

4prt
: ð2:5Þ
We start by expanding the inverse of the operator in (2.4) in powers of e
w ¼ ð1þ eX � X þ e2T Þ�1S

¼ 1� ðX � X Þeþ �T þ ðX � X Þ2
h i

e2 þ ðX � X ÞT þ ðT � ðX � X Þ2ÞðX � X Þ
h i

e3
n
þ ðT � ðX � X Þ2ÞT þ ð�2ðX � X ÞT þ ðX � X Þ3ÞðX � X Þ
h i

e4 þ � � �
o

S þOðe5Þ: ð2:6Þ
In the following we assume that the system is homogeneous, i.e. ra and rt are constant. This assumption is
crucial for the validity of the following analysis. For a discussion of the non-homogeneous case we refer the
reader to Section 6. Integrating (2.6) with respect to X and using
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Z
S2

ðX � X ÞndX ¼ ½1þ ð�1Þn� 2p
nþ 1

X n ¼ ½1þ ð�1Þn� 2p
nþ 1

ðX � X Þ
n
2; ð2:7Þ
we obtain
/ ¼
Z

S2

wdX

¼ 4p 1þ 1

3
X 2 � T

� �
e2 þ T 2 þ 1

5
X 4 � TX 2

� �
e4

�
þ 1

7
X 6 þ 2T 2X 2 � T 3 � TX 4

� �
e6

	
S þOðe8Þ: ð2:8Þ
Hence,
4pS ¼ 1þ 1

3
X 2 � T

� �
e2 þ T 2 þ 1

5
X 4 � TX 2

� �
e4

�
þ 1

7
X 6 þ 2T 2X 2 � T 3 � TX 4

� �
e6

	�1

/þOðe8Þ

¼ 1þ � 1

3
X 2 þ T

� �
e2 þ � 4

45
X 4 þ 1

3
TX 2

� �
e4

�
þ � 44

945
X 6 � 1

3
T 2X 2 þ 4

15
TX 4

� �
e6

	
/þOðe8Þ:

ð2:9Þ
Inserting the definition of the source term S from (2.5), we get
1� e2 ra

rt

� �
/þ e2 q

rt

¼ 1þ � 1

3
X 2 þ T

� �
e2 þ � 4

45
X 4 þ 1

3
TX 2

� �
e4

�
þ � 44

945
X 6 � 1

3
T 2X 2 þ 4

15
TX 4

� �
e6

	
/þOðe8Þ:

ð2:10Þ
Deleting / on both sides and multiplying by rt=e2, we obtain
�ra/þ q ¼ rtT/� rt

3
X 2 /� e2T/þ 4

15
e2X 2/



þ 44

315
e4X 4/þ e4T 2/� 4

5
e4TX 2/

�
þOðe6Þ: ð2:11Þ
We note that this equation has the form of the balance equation (2.2). Since we want to keep this form, in the
subsequent approximations we only manipulate the terms within the brackets.

2.1. SP1 approximation

For the lowest-order approximation, we neglect terms of order Oðe2Þ. Then (2.11) can be written as
�ra/þ q ¼ rtT/� rt

3
X 2/: ð2:12Þ
This gives the classical diffusion (SP1) equation
1

v
@t/ ¼

1

3rt
r2

x/� ra/þ q: ð2:13Þ
Remark 1. The SP1 equation is a parabolic PDE. It is well-known that, with the boundary conditions derived
in Section 4, the radiative energy / is always positive.
2.2. SP2 approximation

For the SP2 approximation, we neglect terms of order Oðe4Þ. Using Neumann’s series, we write (2.11) as
�ra/þ q ¼ rtT/� 1� �2T þ 4

15
�2X 2

� �
rt

3
X 2/þOðe4Þ ð2:14Þ
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¼ rtT/� 1þ �2T � 4

15
�2X 2

� ��1 rt

3
X 2/þOð�4Þ: ð2:15Þ
If we define
n ¼ 1þ �2T � 4

15
�2X 2

� ��1 e2

3
X 2/; ð2:16Þ
we obtain a system of equations with first-order time and second-order space derivatives
rtT/ ¼ �ra/þ
rt

e2
nþ q; ð2:17aÞ

rtTn ¼ rt

3
X 2 /þ 4

5
n

� �
� rt

e2
n: ð2:17bÞ
This can be written as
1

v
@t/ ¼ �ra/þ

rt

e2
nþ q; ð2:18aÞ

1

v
@tn ¼

1

3rt
r2

x /þ 4

5
n

� �
� rt

e2
n: ð2:18bÞ
Remark 2. The eigenvalues of the diffusion matrix
1

3rt

0 0

1 4=5


 �
are 4
15rt

and 0. Thus the necessary condition for boundedness of the solution is satisfied.

Remark 3. In steady-state, these equations reduce to the steady-state SP2 equations, cf. [9].
2.3. SP3 approximation

The transformation of the asymptotic expansion into the SP2 system, i.e. the definition of n, is unique up to
a multiplicative factor. However, for the expansion up to terms of order Oðe6Þ, it is not clear how the substi-
tutions have to be performed. We will use the guidelines outlined at the beginning of this section. Noting that
Eq. (2.11) has the form of the balance equation (2.2), we write (2.11) as
q� ra/ ¼ rtT/� rt

3
X 2 /þ 1þ 11

21
e2X 2 � 3ae2T


 �
4

15
e2X 2/

�
� 1� e2T þ 4

5
ð1� aÞe2X 2


 �
e2T/

	
þOðe6Þ:

ð2:19Þ

As before, we have isolated terms that contain time-dependent diffusion operators (first-order time and second-
order space derivative). Also, we have introduced a parameter a 2 ½0; 1� to split the mixed term TX 2 into two parts.
We chose the parameter between zero and one in order to get diffusion equations with the correct signs.

Using Neumann’s series, we write (2.19) as
q� ra/ ¼ rtT /� rt

3
X 2 /þ 1� 11

21
e2X 2 þ 3ae2T


 ��1 4

15
e2X 2/

(
� 1þ e2T � 4

5
ð1� aÞe2X 2


 ��1

e2T/

)
þOðe6Þ:

ð2:20Þ

Now we define
/2 ¼
1

2
1� 11

21
e2X 2 þ 3ae2T


 ��1
4

15
e2X 2/

� �
; ð2:21aÞ
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f ¼ 1þ e2T � 4

5
ð1� aÞe2X 2


 ��1

ðe2T/Þ; ð2:21bÞ
to obtain the system
rtT / ¼ rt

3
X 2½/þ 2/2 � f� � ra/þ q; ð2:22aÞ

3artT /2 ¼
rt

3
X 2 2

5
/þ 11

7
/2


 �
� rt

e2
/2; ð2:22bÞ

rtT f� rtT/ ¼ rt

3
X 2 12

5
ð1� aÞf


 �
� rt

e2
f: ð2:22cÞ
Diagonalizing the left hand side of (2.22), we obtain
1

v
@t/ ¼

1

3rt
r2

x ½/þ 2/2 � f� � ra/þ q; ð2:23aÞ

1

v
@t/2 ¼

1

3rt
r2

x

2

15a
/þ 11

21a
/2


 �
� 1

3a
rt

e2
/2; ð2:23bÞ

1

v
@tf ¼

1

3rt
r2

x /þ 2/2 þ
12

5
ð1� aÞ � 1

� �
f


 �
� ra/þ q� rt

e2
f: ð2:23cÞ
Remark 4. Note that the parameter a does not capture all possible ambiguities in the derivation of an Oðe6Þ
approximate system. For example, one could operate on the left hand side of (2.20) with certain operators and
still keep the approximation order.

Remark 5. Without time-dependence, the variable f is zero and the above equations reduce to the steady-state
SP3 approximation.

Remark 6. The diffusion matrix of (2.23) reads
1

3rt

1 2 �1
2

15a
11

21a 0

1 2 12
5
ð1� aÞ � 1

2
64

3
75: ð2:24Þ
For approximately a > 0:9, one eigenvalue of this matrix has a negative real part. For 0 < a < 0:9 we have one
positive real eigenvalue and two complex eigenvalues with positive real part. Therefore we cannot expect that
the solution to the SP3 equations satisfies the correct physical bounds, i.e., the energy / is not guaranteed to be
positive. Also, to obtain a system that is not ill-posed, we must take 0 < a < 0:9.
2.4. Simplification of the SP3 system

The positivity of the radiative energy / can be crucial in many applications. But our numerical results
in Section 5 show that the SP3 equations can produce negative (unphysical) solutions /. We argued that
this is due to the fact that the diffusion matrix has complex eigenvalues. In this section, we present an
approximation of the SP3 system that has a positive diffusion matrix (i.e. its eigenvalues are real and
positive).

In Section 3, we derive the SP3 equations with a ¼ 2=3 from the P3 moment equations. We show that the
variable /2 can be identified with the second-order Legendre moment of the radiative intensity. The variable f,
on the other hand, is an auxiliary variable without a straight-forward physical interpretation. Furthermore,
f = 0 in steady-state. To simplify the SP3 equations, we therefore make a quasi-steady approximation and
neglect f. We obtain
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1

v
@t/ ¼

1

3rt
r2

x ½/þ 2/2� � ra/þ q; ð2:25aÞ

1

v
@t/2 ¼

1

3rt
r2

x

2

15a
/þ 11

21a
/2


 �
� 1

3a
rt

e2
/2: ð2:25bÞ
We call these the SSP3 (simplified-simplified P3) equations.

Remark 7. From Eq. (2.23), we see that f is of order Oðe2Þ. Hence, Eqs. (2.25) are asymptotically correct up to
Oðe2Þ. This means that the SSP3 equations are of the same order as SP1 asymptotically.

Remark 8. The diffusion matrix of (2.25) reads
1

3rt

1 2
2

15a
11
21a

" #
: ð2:26Þ
For 0 < a < 1, its eigenvalues are real and positive.
3. SP3 via P3

The one-dimensional time-dependent P3 equations are written in scaled form as
e2 1

v
@tw0 þ e@zw1 ¼ rtð4pS � w0Þ; ð3:1aÞ

e2 1

v
@tw1 þ e@z

1

3
w0 þ

2

3
w2

� �
¼ �rtw1; ð3:1bÞ

e2 1

v
@tw2 þ e@z

2

5
w1 þ

3

5
w3

� �
¼ �rtw2; ð3:1cÞ

e2 1

v
@tw3 þ e@z

3

7
w2 ¼ �rtw3: ð3:1dÞ
Next we derive equations for w0 and w2 within an error of Oðe8Þ. From Eqs. (3.1b) and (3.1d), we get that
w1;w3 � OðeÞ. Eq. (3.1c) then implies that w2 � Oðe2Þ
w1 ¼ � 1þ e2

vrt
@t

� ��1
e

3rt
@zðw0 þ 2w2Þ;

¼ � 1� e2

vrt
@t þ

e4

v2r2
t

@2
t

� �
e

3rt
@zðw0 þ 2w2Þ þOðe7Þ

ð3:2Þ
and
w3 ¼ � 1þ e2

vrt
@t

� ��1
3e
7rt

@zw2;

¼ � 1� e2

vrt
@t

� �
3e
7rt

@zw2 þOðe7Þ:
ð3:3Þ
Substituting (3.2) and (3.3) into (3.1c), we obtain
e2

v
@tw2 �

2e2

15rt
@2

z w0 �
11e2

21rt
@2

z w2 þ
e2

v
@t

2e2

15r2
t

@2
z w0 þ

11e2

21r2
t

@2
z w2 �

2e4

15vr3
t

@t@
2
z w0

� �
¼ �rtw2 þOðe8Þ: ð3:4Þ
This implies
w2 ¼
2e2

15r2
t

@2
z w0 þOðe4Þ: ð3:5Þ
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Using (3.5) in the sixth term of the left hand side of (3.4), we obtain
1� e2

vrt
@t

� �
e2

vrt
@tw2 �

2e2

15r2
t

@2
z w0 �

11e2

21r2
t

@2
z w2

� �
¼ �w2 þOðe8Þ: ð3:6Þ
This gives
e2

vrt
@tw2 �

2e2

15r2
t

@2
z w0 �

11e2

21r2
t

@2
z w2 ¼ � 1� e2

vrt
@t

� ��1

w2 þOðe8Þ;

¼ � 1þ e2

vrt
@t þ

e4

v2r2
t

@2
t

� �
w2 þOðe8Þ:

ð3:7Þ
We arrive at
2
e2

vrt
@tw2 �

2e2

15r2
t

@2
z w0 �

11e2

21r2
t

@2
z w2 ¼ �w2 �

e4

v2r2
t

@2
t w2 þOðe8Þ: ð3:8Þ
Next, substituting (3.2) into (3.1a), we get:
e2 1

v
@tw0 �

e2

3rt
@2

z 1� e2

vrt
@t þ

e4

v2r2
t

@2
t

� �
ðw0 þ 2w2Þ ¼ rtð4pS � w0Þ þOðe8Þ: ð3:9Þ
The second term of the left hand side of (3.9) can be transformed in the following way:
e2

3rt
@2

z w0 þ 2w2 �
e2

vrt
@tw0 � 2

e2

vrt
@tw2 þ

e4

v2r2
t

@2
t w0

� �
þOðe8Þ

¼ e2

3rt
@2

z w0 þ 2w2 �
e2

vrt
@tw0 �

4e2

15vr3
t

@t@
2
z w0 þ

e4

v2r2
t

@2
t w0

� �
þOðe8Þ

¼ e2

3rt
@2

z w0 þ 2w2 � 1� 4e2

15r2
t

@2
z þ

e2

vrt
@t


 ��1
e2

vrt
@tw0

 !
þOðe8Þ

¼ e2

3rt
@2

z ðw0 þ 2w2 � f̂Þ þOðe8Þ: ð3:10Þ
The unknown f̂ is defined by Eq. (2.16) with w0 replacing /. Here we used (3.5) again. As a result, the 1-D P3

equations can be written, with an error of Oðe8Þ, as follows:
e2 1

v
@tw0 �

e2

3rt
@2

z ðw0 þ 2w2 � f̂Þ ¼ rtð4pS � w0Þ; ð3:11aÞ

e2 1

v
@tw2 �

e2

15rt
@2

z w0 �
11e2

42rt
@2

z w2 ¼ �
rt

2
w2 �

e4

2v2rt
@2

t w2; ð3:11bÞ

e2 1

v
@tðf̂� w0Þ �

4e2

15rt
@2

z f̂ ¼ �rtf̂: ð3:11cÞ
The three-dimensional SP3 equations are obtained by replacing @2
z with r2

x ,
1

v
@tw0 ¼

1

3rt
r2

xðw0 þ 2w2 � f̂Þ � ra/þ q; ð3:12aÞ

1

v
@tw2 ¼

1

3rt
r2

x

1

5
w0 þ

11

14
w2

� �
� rt

2e2
w2 �

e2

2v2rt
@2

t w2; ð3:12bÞ

1

v
@tðf̂� w0Þ ¼

4

15rt
r2

x f̂�
rt

e2
f̂: ð3:12cÞ
Remark 9. Comparing the result (3.12) with the SP3 equations (2.22) derived by asymptotic analysis, if we set
a ¼ 2=3, we obtain almost the same equations. The only difference is the term e2

2v2rt
@2

t w2 in (3.12b).
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4. Boundary conditions and initial values

In this section, we derive boundary conditions for the SP3 (2.23) and SSP3 equations. The results for SP1

and SP2 can be derived accordingly and are just stated.

4.1. Boundary conditions for SP3

We use Marshak’s method [10], i.e. we ignore the tangential derivative near the boundary and equate ingo-
ing half fluxes
Z

n�X<0

ðn � XÞwdX ¼
Z

n�X<0

ðn � XÞwb dX; ð4:1ÞZ
n�X<0

P 3ðn � XÞwdX ¼
Z

n�X<0

P 3ðn � XÞwb dX: ð4:2Þ
We assume that wb is independent of time. Using (2.6), the left sides of (4.1) and (4.2) can be written as
Z
n�X<0

ðn � XÞwdX ¼ �1� 2

3
eðn � X Þ þ e2 � 1

2
ðn � X Þ2 þ T


 �
þ e3 4

3
ðn � X ÞT � 2

5
ðn � X Þ3


 �� 	
pS þOðe4Þ;

ð4:3ÞZ
n�X<0

P 3ðn � XÞwdX ¼ 1

4
þ e2 � 1

12
ðn � X Þ2 � 1

4
T


 �
� 4

35
e3ðn � X Þ3

� 	
pS þOðe4Þ: ð4:4Þ
From (2.9), it can be seen that
pS ¼ 1

4
/þ e2T/� 1

3
e2X 2/

� �
þOðe4Þ; ð4:5Þ
and from (2.21) we get
/2 ¼
2

15
e2X 2/þOðe4Þ; ð4:6aÞ

f ¼ e2T /þOðe4Þ: ð4:6bÞ
Additionally, we assume that / does not vary on the boundary, i.e. we set f = 0. Substituting (4.5) into (4.3)
and (4.4), and using (4.6a) and (4.6b), then (4.1) and (4.2), up to Oðe4Þ, become
/þ 5

4
/2 þ

2

3
eðn � X Þð/þ 2/2 � fÞ ¼ l1; ð4:7Þ

/� 5/2 �
24

7
eðn � X Þ/2 ¼ l2; ð4:8Þ
where
l1 ¼ �4

Z
n�X<0

ðn � XÞwb dX; l2 ¼ 16

Z
n�X<0

P 3ðn � XÞwb dX:
We obtain the boundary conditions
eðn � X Þ/ ¼ � 25

12
/þ 25

24
/2 þ

3

2
l1 þ

7

12
l2 ð4:9aÞ

eðn � X Þ/2 ¼
7

24
/� 35

24
/2 �

7

24
l2 ð4:9bÞ

f ¼ 0: ð4:9cÞ
Remark 10. We have derived these using Marshak’s method [10]. There exist alternative ideas to come up with
consistent boundary conditions, e.g. Mark’s method or a boundary layer analysis, which may give better
boundary values.
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4.2. Boundary conditions for SP1 and SP2

Analogously, boundary conditions for SP1 and SP2 can be derived. For the SP1 equations, we have
n � rx/ ¼
rt

e
3

2
l1 �

3

2
/

� �
; ð4:10Þ
and the SP2 boundary conditions read
n � rxð/þ
4

5
nÞ ¼ rt

e
3

2
ðl1 � /� e2

rt
qþ e2 ra

rt
/Þ � 9

4
n

� �
: ð4:11Þ
Remark 11. Without time-dependence, all the above boundary conditions reduce to previously-proposed
boundary conditions for the steady-state SPN equations [14,2,9].
4.3. Initial values

Given an initial particle distribution, it is straight-forward to calculate an initial value for /. From the
asymptotic analysis, the physical meaning of the auxiliary variables (n,/2,f) is not obvious. Therefore it is
not clear what the appropriate initial conditions for these variables are. In many cases, the initial setting is
a steady state. In addition, the time-dependent SPN equations reduce to the steady-state SPN equations. Thus,
for the SP2 equations, we propose to compute / from the initial distribution and then solve the steady-state
version of (2.16), which is an elliptic equation, for n. For the SP3 equations, we would have to solve (2.21) for
/2 and f. Of course, this gives f = 0. Alternativley, /2 could be identified as the second-order Legendre
moment and thus be computed from the initial value for w.

5. Numerical results

In this section, we compare the solutions to the time-dependent SPN equations to the solution of the Boltz-
mann transport equation in several test cases. To solve the SPN equations we use a standard finite difference
discretization. The transport solution is computed by a high order (120 directions) discrete-ordinates method.

5.1. Marshak wave

Our first example is shown in Fig. 1. We consider a Marshak wave problem on the interval ½0; 1�. There is
no source inside the medium, q = 0. On the right side, there is no ingoing radiation, i.e. wb ¼ 0. On the left
side, we prescribe an isotropic ingoing radiation, wb ¼ 100. As initial values we prescribe zero for all variables.
Thus the radiation will propagate through the medium from left to right. We prescribe scattering and absorp-
tion coefficients that are consistent with the asymptotic scaling. To that end we choose rs ¼ 5:0 larger than
ra ¼ 0:5. The particle mean free path is roughly 1=rt ¼ 0:2. Therefore initially a boundary layer for x < 0:2
can be seen. To compare the models more precisely, we computed the total particle number and the average
depth

R 1

0
z/ðt; zÞdz

.R 1

0
/ðt; zÞdz. The results are shown in Table 1. As time increases and thus the system

approaches a steady-state, time and space derivatives become small. This is the regime where e is small and
we therefore expect the SPN solutions to be close to the transport solution. This can in fact be observed.
We can also see that the higher-order approximations are more accurate than SP1. Based on the average
depths, one could say that in terms of diffusivity, SSP3 is most diffusive, followed by SP1 and SP3.

The following test case is designed to show the non-positivity of the higher-order approximations. Instead
of being isotropic, the incident radiation of the left side (x1 ¼ 0) is chosen to be a mono-directional normally
incident beam wbðlÞ ¼ 100dð1� lÞ. Numerically, the d-function is approximated by a Gaussian with small
width. We choose ra ¼ 0:5 and rs ¼ 0. Thus the medium does not satisfy the assumptions necessary for the
asymptotic analysis to be valid. This means that in this case e is not small, and we cannot expect the SPN equa-
tions to be good approximations to the transport equation. But the results in Fig. 2 show that the odd-order
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Fig. 1. Marshak wave problem. Medium with rs ¼ 5:0, ra ¼ 0:5, no source q = 0. Boundary values wb ¼ 100 on the left side, wb ¼ 0 on
the right side. Initial values zero. Comparison between SP 1, SP 3 (a ¼ 2=3), SSP3 and exact transport solution.
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SPN approximations still give reasonable results. As is well known [9], the SP2 approximation can give less
accurate results than the lower order SP1 approximation. The biggest differences between the models can
be seen for small times. The boundary layer on the left side of the system cannot be captured accurately by
any method. The average depths are 0.055 for the transport solution, 0.147 for SP3, 0.150 for SP1, and
0.161 for SSP3. However, in this case the SP3 solution has an unphysical negative energy and furthermore
it contains roughly three times the number of particles as the transport solution, whereas SP1 and SSP3 con-
tain less than twice the number. This might be due to the boundary conditions we used, since this test case is



Table 1
Particle number and average depth for Marshak wave problem (panel A, t ¼ 0:1; panel B, t ¼ 1:0)

Model Transport SP1 SP3 SSP3

Panel A

No. of particles (%) 100 120 143 117
Average depth 0.107 0.127 0.123 0.134

Panel B

No. of particles (%) 100 103 101 100
Average depth 0.279 0.275 0.276 0.274

Medium with rs ¼ 5:0, ra ¼ 0:5, no source q = 0. Boundary values wb ¼ 100 on the left side, wb ¼ 0 on the right side. Initial values zero.
Comparison between SP 1, SP 3 (a ¼ 2=3), SSP3 and exact transport solution.
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Fig. 2. Marshak wave problem. Medium with rs ¼ 0:0, ra ¼ 0:5, no source q = 0. Mono-directional normally incident beam
wbðlÞ ¼ 100dð1� lÞ on the left side, wb ¼ 0 on the right side. Initial values zero. Comparison between SPN for N ¼ 1; 2; 3 (a ¼ 2=3), SSP3

and exact transport solution at t ¼ 0:1.
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dominated by the inflow through the boundary. It remains to investigate whether other sets of boundary con-
ditions give better results.

We use the same physical setting in Fig. 3. Here, we vary the parameter a in the SP3 approximation. Again,
the purpose of this example is to investigate the positivity property. We choose a ¼ 0:1; 0:4; 0:7; 0:8 (we can
neither choose a = 0 nor a = 1, and for a roughly greater than 0.9, the system becomes ill-posed). For
0 < a 6 0:6 the solution is only weakly dependent on a. The solutions for a ¼ 0:1 and a ¼ 0:4 in the figure
almost coincide. But if we increase a, the solution changes. In this example, for small times, the solution
increases, whereas it decreases for large times. If we increase a further (a > 0:8), then the solution oscillates
and has a negative energy. This behavior foreshadows the ill-posedness for a > 0:9. The positive real part
of the eigenvalues, which damps oscillations, is already very small. On the other hand, the real parts of the
eigenvalues are larger for a small. This means that oscillations are damped more strongly and negative energies
are less likely to be observed in numerical results. But the eigenvalue structure is similar to the case of larger
a’s; thus we expect that negative solutions can also be observed for small a. As a guideline, we can conclude
that a should not be chosen too large, i.e. a < 0:7. However, it is not clear which value to take. In the other
examples, we chose a ¼ 2=3, since this is the choice that arises from the P3 equations.
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5.2. Benchmark for non-equilibrium radiative transfer

The methodology in this paper can also be applied to radiative transfer problems. Here we compare the
time-dependent SPN solutions to an analytical benchmark solution generated by Su and Olson for non-equi-
librium radiative transfer [13]. The radiative transfer equation is coupled to a material balance equation. In 1-
D, the equations are
1

v
@tIðt; x; lÞ þ l@xIðt; x; lÞ

¼ ra
a
2

T 4ðt; xÞ � Iðt; x; lÞ
� �

þ rs
1

2

Z 1

�1

Iðt; x; l0Þdl0 � Iðt; x; lÞ
� �

þ Qðt; xÞ ð5:1aÞ

1

v
cvðT ðt; xÞÞ@tT ðt; xÞ ¼ ra

Z 1

�1

Iðt; x; l0Þdl0 � aT 4ðt; xÞ
� �

: ð5:1bÞ
Eq. (5.1a) has the form of the transport Eq. (1.1) with a special source q ¼ raaT 4 þ 2Q. Therefore, the SPN

asymptotic method can be applied to (5.1a). In the benchmark, cv is set to cv ¼ 4aT 3; thus the problem is linear
in I and aT 4. The medium is infinite (x 2 R) and initially cold (I = 0 and aT 4 ¼ 0 for t = 0). Furthermore,
v = 1. The source is isotropically distributed in angle, and uniformly distributed in a finite space, but only
switched-on for a finite amount of time
Q ¼
1

4x0
for 0 6 t 6 t0; �x0 6 x 6 x0;

0 otherwise:

�
ð5:2Þ
Here, x0 ¼ 0:5 and t0 ¼ 10. A medium with ra ¼ 0:5 and rs ¼ 0 is considered. The comparison to the bench-
mark solution is shown in Fig. 4. Compared to the benchmark, the SPN error is less than half that of diffusion.
Smaller values of the parameter a do not significantly change the result. For comparison, we have also com-
puted the solution to the time-dependent P3 equations. The P1, P3 and P7 solutions have been compared in
[11]. The P3 solution is more accurate than the SP3 solution, especially for short times. This can be expected
since we made some additional simplifications. The SSP3 solution (not shown here) is slightly less accurate
(error 10% larger) than the SP3 solution. In the case ra ¼ 0:25, rs ¼ 0:25, similar assertions can be made.
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6. Conclusions and future work

We have derived the Simplified PN equations for time-dependent transport problems by an asymptotic
analysis. The equations have first-order time and second-order space derivatives. If we start with the one-
dimensional PN equations, it is not possible to derive equations of this form using the classical formal proce-
dure of Gelbard.

Concerning the validity of the time-dependent SPN equations, assertions similar to the steady case can be
made. Physically, the parabolic scaling and e small mean that we require the Knudsen number (the inverse of
the factor multiplying the scattering operator, ratio of mean free path and characteristic length scale) and the
kinetic Strouhal number (multiplying the time derivative, characteristic length divided by the product of char-
acteristic time and velocity) to be small of order e. We also note that the Neumann series is applied to the
unbounded directional derivative operator X � rx, and therefore this series must be understood as an asymp-
totic approximation to the original transfer equation.

The numerical results show that the SPN approximations improve diffusion theory in the sense that not too
far away from the diffusive limit a better approximation is obtained. In the case of the benchmark of Su and
Olson, the difference between the SP3 solution and the transport solution is less than half the difference
between diffusion and transport. Especially for short times and near sources, the higher order SPN solutions
are more accurate. However, as shown in the second Marshak wave example, this range of applicability does
not extend to very forward-peaked beams and thin media. As in the steady case, one should take only odd
values for N. Computation times roughly scale with the number of equations. The SSP3 system consists of
only two equations but is more accurate than SP1. The P3 model consists of four equations.

The time-dependent SP1 equations satisfy a maximum principle. The radiative energy or particle number is
always positive. We have found that the time-dependent SP3 equations do not guarantee a positive energy. A
positive diffusion matrix is a necessary condition for a positive energy. This condition is satisfied by the SSP3

equations, and in simulations these always showed a positive energy. If in a particular application, the posi-
tivity of the energy is crucial, we would use the SSP3 equations and otherwise the SP3 equations. In the der-
ivation of the SP3 equations, several terms can be defined in different ways. We have studied these ambiguities
by introducing a parameter a. Numerical results show that a should not be chosen too large, since then oscil-
lations occur. In our examples, we fixed a ¼ 2=3 since this is the choice which can be derived from the P3 equa-
tions, and in simulations it usually gives good results. From the simulations, it also appears that the smaller a
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is chosen the less likely / becomes negative. We note that in the limit a = 0, the time derivative in (2.22b) van-
ishes. The SP3 equations become a set of partial differential-algebraic equations. The properties of these equa-
tions should be investigated further.

Further work includes simulations in two and three space dimensions. Also, the use of the SPN approxi-
mations as pre-conditioners for transport calculations will be investigated. We expect that the time-dependent
SPN equations can be generalized to anisotropic scattering in a similar manner as in the steady-state case [7].
In the derivation of the equations, we assumed a homogeneous medium. In steady-state, a variational analysis
yielded the SPN equations for non-homogeneous media as well as interface and boundary conditions [2,14].
The only difference for space-dependent coefficients is that the spatial derivatives have to be modified like
1

rt
r2

x ! rx
1

rtðxÞ
rx:
For steady-state problems, this modification of the spatial derivatives is asymptotically correct in planar
geometry and we expect that it is asymptotically correct for time-dependent planar geometry problems.
The interface conditions for media with non-continuous scattering coefficients (especially those containing
void-like regions) should also be of a similar form. But this will have to be analyzed in more detail. Finally,
there may be other ways to obtain different and better boundary conditions.

Acknowledgements

The authors acknowledge support from German Academic Exchange Service DAAD under grant A/05/
00780, the German Research Foundation DFG under grant KL 1105/14/2, and from the Rheinland-Pfalz
Excellence Cluster ‘‘Dependable Adaptive Systems and Mathematical Modeling’’.

Appendix A. Solutions with positive energy

There exist no general maximum principles for systems of equations of parabolic type [1]. Therefore we can-
not expect the solutions to the SPN equations for N > 1 to be positive. However, the following simple example
indicates that the positivity property of the diffusion matrix is necessary for the positivity of the solution.

Example 12. Consider the Schrödinger-like Cauchy problem
u

v


 �
t

¼
0 1

�1 0


 �
u

v


 �
xx

on R ðA:1Þ
with initial value ½u0; v0�T. The diffusion matrix, i.e. the matrix in front of the Laplacian, has the eigenvalues �i.
The solution can be written explicitly as a convolution
uðt; xÞ ¼ 1ffiffiffiffiffiffi
2p
p

t

Z
R

v0ðyÞ cos
ðx� yÞ2

4t

 !
þ u0ðyÞ sin

ðx� yÞ2

4t

 !" #
dy ðA:2Þ

vðt; xÞ ¼ 1ffiffiffiffiffiffi
2p
p

t

Z
R

v0ðyÞ sin
ðx� yÞ2

4t

 !
� u0ðyÞ cos

ðx� yÞ2

4t

 !" #
dy ðA:3Þ
The kernels with which the initial data is convoluted are not positive. Therefore it is easy to construct negative
solutions to the Cauchy problem.
References

[1] H. Amann, Linear and quasilinear parabolic problems, first ed., Birkhäuser, 1995.
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